Chemical ordering phenomena in nanostructured FePt: Monte Carlo simulations.

نویسندگان

  • S Brodacka
  • M Kozlowski
  • R Kozubski
  • Ch Goyhenex
  • G E Murch
چکیده

Free-surface-induced L10 chemical long-range ordering phenomena in a nanolayer, a nanowire and a cubic nanoparticle of FePt were studied by means of Monte Carlo simulations. The system was modeled with nearest-neighbor and next-nearest-neighbor interatomic pair interactions deduced from ab initio calculations. The generated samples, the dimensionality of which was determined by appropriate periodic boundary conditions imposed upon the generated supercells, were initially either perfectly ordered in the c-variant L10 superstructure ((001)-oriented monatomic planes), or completely disordered in the fcc crystalline structure. Vacancy-mediated creation of equilibrium atomic configurations was modelled by relaxing the systems at temperatures below the 'order-disorder' transition point using the Glauber algorithm implemented with the vacancy mechanism of atomic migration. The (100)-type-surface-induced heterogeneous nucleation of L10-order domains was observed and quantified by means of an original parameterization enabling selective determination of volume fractions of particular L10-variants. Due to the specific competition between the three kinds of (100)-type free surfaces, the initial c-L10 variant long-range order appeared to be the most stable in the cubic nanoparticle. The initially disordered samples were transformed by the creation of a specific L10 domain structure with a mosaic of particular L10-variant domains at the surfaces and almost homogeneous long-range order in the inner volume. The analysis of correlation effects revealed that chemical ordering was initiated at the free surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic lattice Monte-Carlo simulations on the ordering kinetics of free and supported FePt L10-nanoparticles

The ordering kinetics in free and supported L1(0) nanoparticles was studied by means of lattice-based kinetic Monte-Carlo simulations. Starting from a fully disordered particle of Wulff shape, the simulations show that the nucleation of ordered domains is starting quickly on various (100) facets but is retarded in the particle volume due to the lack of vacancies compared with a thin film geomet...

متن کامل

Surface segregation in nanoparticles from first principles: The case of FePt

FePt nanoparticles are known to exhibit reduced L10 order with decreasing particle size. The phenomenon is addressed by investigating the thermodynamic driving forces for surface segregation using a local (inhomogeneous) cluster expansion fit to ab initio data. Subsequent Monte Carlo simulations reveal that first surface layer Pt segregation is compensated by Pt depletion in the second subsurfa...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

Analysis of occupational and displacive disorder using the atomic pair distribution function: a systematic investigation

Many disordered crystalline materials show chemical short range order and relaxation of neighboring atoms. Local structural information can be obtained by analyzing the atomic pair distribution function (PDF). The viability of reverse Monte Carlo (RMC) simulations to extract quantitative information about chemical ordering as well as displacements is investigated. The method has been applied to...

متن کامل

Effect of lattice mismatch on chemical ordering of epitaxial L10 FePt films

The effect of lattice mismatch on the chemical ordering of epitaxial FePt films was studied. The results showed that the lattice constant scd of the FePt films decreased with increasing lattice mismatch « from about 2.23% to 6.33%. Upon further increase of « to about 8.8%, c increased. On the other hand, the variation of the lattice constant sad of the FePt films showed a reversal behavior to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 42  شماره 

صفحات  -

تاریخ انتشار 2015